What are Myelodysplastic Syndromes and what are current treatment options?

Professor David Bowen
Leeds Teaching Hospitals
Content

• What is MDS?
• What are the goals for treatment?
• How do we treat MDS in the UK in 2019?
What is MDS? (Myelodysplastic syndromes)

Summary introduction

• It *is* a blood cancer
 • Biologically correct
 • But often behaves very differently from other cancers
• It is *not* leukaemia

• Affects an older age group
 • average age is 74yrs
Normal bone marrow cells → Healthy blood production

MDS cell (Internal damage) → More cells die

External damaging proteins

Low blood counts =
Low-risk MDS
Healthy blood production

MDS cell (Internal damage) → Blast cells increase

Healthy bone marrow cells

Some normal cells die naturally

Cells don’t die naturally: “blasts”

Higher-risk MDS
Bone marrow in MDS: too many cells

Healthy bone marrow

MDS
Bone marrow in MDS: abnormal cells
Diagnosis of MDS

- Abnormal bone marrow cells – dysplasia
- Sometimes increased (‘excess of’) leukaemia-like ‘blasts’
- Chromosome / gene changes
- Genetic mutations
MDS is not one, but many diseases

Classifying MDS

– Examining bone marrow under microscope

– Also use genetic information

= WHO classification system
(latest is 2016/17)
WHO classification 2016/17

<table>
<thead>
<tr>
<th>WHO 2017</th>
<th>WHO 2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>MDS with single lineage dysplasia (MDS-SLD)</td>
<td>Refractory Cytopenia with Unilineage Dysplasia</td>
</tr>
<tr>
<td>MDS-SLD with ring sideroblasts</td>
<td>Refractory Anaemia with Ringed Sideroblasts</td>
</tr>
<tr>
<td>MDS with multilineage dysplasia</td>
<td>Refractory Cytopenia with Multilineage Dysplasia (RCMD)</td>
</tr>
<tr>
<td>MDS-MLD with ring sideroblasts</td>
<td>RCMD-RS</td>
</tr>
<tr>
<td>MDS with isolated del(5q)</td>
<td></td>
</tr>
<tr>
<td>MDS with excess blasts-1</td>
<td>Refractory Anaemia with Excess Blasts-1</td>
</tr>
<tr>
<td>MDS with excess blasts-2</td>
<td>RAEB-2</td>
</tr>
<tr>
<td>MDS, unclassifiable (MDS-U)</td>
<td></td>
</tr>
</tbody>
</table>
Who gets MDS?

• Average age = 74 years

• Males more than females
What causes MDS?

- Largely unknown
 - Rare complication of previous chemotherapy / radiotherapy

- Not normally an inherited condition
 - Small numbers of families have relatives with MDS/AML
Clinical features of MDS
what patients feel

• Fatigue & breathless on exertion – anaemia
 • Most common symptoms

• Infection
 • Various

• Bleeding
 • Uncommon but increases as disease progresses
What matters to MDS patients?

• Quality of life
 • Manage my fatigue (and other complications)

• Quantity of life
 • Manage my shortened life expectancy
 • Modify the natural history of MDS where possible
How long is life expectancy with MDS?

Estimating prognosis

• Scoring systems like IPSS-R
 • ‘Low-risk’ MDS
 • ‘High-risk’ MDS

• *Experience* - to bring the ‘score’ into context
How do we assess patients’ prognosis?

Revised International Prognostic Scoring System (IPSS-R)

- Values of blood cells
 - haemoglobin,
 - neutrophils,
 - platelets
- Percentage of blast cells in bone marrow
- Nature of chromosome change in bone marrow
Approach to treatment discussions

Question 1

• Is there a realistic prospect of cure, with an acceptable level of risk?
 • Unfortunately this is relatively infrequent.
Approach to treatment discussions

Question 2

• Are there symptoms?
 • If so, treat these e.g. fatigue, breathlessness due to anaemia, to improve **quality of life**
 – This is the goal for the majority of patients
Approach to treatment discussions

Question 3

• Can we expect to prolong life expectancy with an acceptable improvement in quality life?
 • For example, without most of the time gained spent in hospital.
Approach to treatment discussions

Question 4

• What are the goals of the patient
 • patient preferences
 • Attitude to risk?
How do we decide how MDS should be treated?

Evidence
- From clinical trials

Expert opinion
- From experience
- From registries

Expert consensus guideline
- European
- British
Guidelines – friend or foe?
Guidelines – friend or foe?

Lower-risk MDS recommendations for “standard” allogeneic SCT

(Very) Low Risk
Intermediate Risk
IPSS-R

Poor performance
Nonfit®

Nontransplant strategies*

Good performance
Fit®

No poor risk features**

Nontransplant strategies*

Failure &

Transplant strategies#

Available donor^

Poor risk features**

Transplant strategies#
‘Low-risk’ MDS: 75% MDS patients

Low IPSS risk

- Asymptomatic cytopenia
 - Watchful waiting
 - sEpo <500 mU/mL and/or RBC units <2/month
 - rHuEpo +/- G-CSF
 - Lenalidomide (within prospective registry)

- Symptomatic anemia
 - MDS del(5q)
 - RBC transfusion and iron chelation therapy
 - Age <60 years, BM blasts <5%, normal cytogenetics, transfusion-dependency (hypocellular bone marrow)
 - rHuEpo +/- G-CSF
 - Immunosuppressive therapy with ATG plus CSA

Figure 1. Therapeutic algorithm for adult patients with primary MDS and low IPSS score. BM, bone marrow; sEpo, serum erythropoietin.
How do we treat MDS in the UK now?

- Most patients receive **supportive care**
 - Blood and/or platelet transfusions
 - Antibiotics for infections

- This is a reasonable approach for most, because there are few treatments that work reliably without severe side effects
How do we treat low-risk MDS in the UK now?

• There are drugs approved in the NHS for the active treatment of MDS patients
 • Eprex (EPO)
 • Iron removal – desferrioxamine, Exjade
 • Lenalidomide
Iron removal (chelation)

• Still not clear who should be treated with iron chelation
 – Certainly not everybody on blood transfusions
 – Only when we think that iron chelation will help to improve length of survival

• Currently we remove iron by infusions of Desferal under the skin

• Exjade
 – is a tablet
 – Seems as effective as Desferal
 – Shorter time in use so long term effects not known
How do we treat MDS in the UK now?

Actively treating low blood counts

- EPO (Erythropoietin)
 - Once weekly injections
 - Most effective in patients with few blood transfusions or before the need for blood transfusions
Lenalidomide for MDS with del(5q)
(rare form; 5% MDS patients)

• ~2/3 patients respond well and become free of blood transfusions
• Responses last for at least on average 2 years
High-risk MDS

Intermediate-2 or high IPSS risk

- **Age ≥65-70 years or poor performance status**
 - Supportive care
 - Azacitidine

- **Age <65-70 years and good performance status**
 - No suitable stem cell donor
 - Poor risk cytogenetics
 - ≥10% BM blasts, no poor risk cytogenetics
 - Azacitidine
 - AML-like CT OR Azacitidine
 - <10% BM blasts
 - Allogeneic SCT
 - ≥10% BM blasts
 - AML-like CT OR Azacitidine (within clinical trial or prospective registry)
 - Available stem cell donor
 - Allogeneic SCT

Figure 3. Therapeutic algorithm for adult patients with primary MDS and intermediate-2 or high IPSS score. CT, chemotherapy.
Azacitidine (Vidaza)

- Azacitidine kills cells as they divide
- Given under the skin daily for 7 days
- Large volume injection
Azacitidine

- 45% patients in the original study who were receiving red cell transfusions stopped needing these.
- Vidaza improved the short term quality of life
- Responses last for about one year
Aiming for cure

Stem cell transplant

– Considered for younger patients (<60-65 years) with all but the lowest risk MDS type
– Mostly uses blood cells now, not bone marrow
 – Preferably from matched brother / sister (only 1 in 3 chance of match)
– Results improving for transplants

Newly published guidelines for stem cell transplant in MDS: 2017
New service for patients: online video consultations with an MDS specialist

Research FOR Patients - For an informed and empowered opinion - Have you made your clinical paper accessible yet? Professor David Bowen and Leeds Teaching Hospitals are pleased to announce the start of a new service for patients who would like a specialist MDS consultation but who are unable to, or prefer not to travel to Leeds for [...]