What are Myelodysplastic Syndromes and what are current treatment options?

Professor David Bowen
Leeds Teaching Hospitals

Content

- What is MDS?
- What are the goals for treatment?
- How do we treat MDS in the UK in 2019?

What is MDS? (Myelodysplastic syndromes)

Summary introduction

- It is a blood cancer
 - Biologically correct
 - But often behaves very differently from other cancers
- It is not leukaemia
- Affects an older age group
 - average age is 74yrs

NORMAL

Healthy blood production

Some normal cells die naturally

MDS

Low blood counts = Low-risk MDS

Healthy blood production

Blast cells increase High-risk MDS

Bone marrow in MDS: too many cells

Bone marrow in MDS: abnormal cells

Diagnosis of MDS

- Abnormal bone marrow cells – dysplasia
- Sometimes increased ('excess of') leukaemia-like 'blasts'
- Chromosome / gene changes
- Genetic mutations

MDS is not one, but many diseases

Classifying MDS

–Examining bone marrow under microscope

Also use genetic information

WHO classification system(latest is 2016/17)

WHO classification 2016/17

WHO 2017	WHO 2008
MDS with single lineage dysplasia (MDS-SLD)	Refractory Cytopenia with Unilineage Dysplasia
MDS-SLD with ring sideroblasts	Refractory Anaemia with Ringed Sideroblasts
MDS with multilineage dysplasia	Refractory Cytopenia with Multilineage Dysplasia (RCMD)
MDS-MLD with ring sideroblasts	RCMD-RS
MDS with isolated del(5q)	
MDS with excess blasts-1	Refractory Aanaemia with Excess Blasts-1
MDS with excess blasts-2	RAEB-2
MDS, unclassifiable (MDS-U)	

Who gets MDS?

Average age = 74 years

Males more than females

What causes MDS?

- Largely unknown
 - Rare complication of previous chemotherapy / radiotherapy
- Not normally an inherited condition
 - Small numbers of families have relatives with MDS/AML

Clinical features of MDS what patients feel

- Fatigue & breathless on exertion anaemia
 - Most common symptoms
- Infection
 - Various
- Bleeding

Institute of Oncology

t lames's

Uncommon but increases as disease progresses

What matters to MDS patients?

- Quality of life
 - Manage my fatigue (and other complications)
- Quantity of life
 - Manage my shortened life expectancy
 - Modify the natural history of MDS where possible

How long is life expectancy with MDS?

Estimating prognosis

- Scoring systems like IPSS-R
 - 'Low-risk' MDS
 - 'High-risk' MDS
- Experience to bring the 'score' into context

How do we assess patients' prognosis?

Revised International Prognostic Scoring System (IPSS-R)

- Values of blood cells
 - haemoglobin,
 - · neutrophils,
 - platelets
- Percentage of blast cells in bone marrow
- Nature of chromosome change in bone marrow

- Is there a realistic prospect of cure, with an acceptable level of risk?
 - Unfortunately this is relatively infrequent.

- Are there symptoms?
 - If so, treat these e.g. fatigue, breathlessness due to anaemia, to improve quality of life
 - This is the goal for the majority of patients

- Can we expect to prolong life expectancy with an acceptable improvement in quality life?
 - For example, without most of the time gained spent in hospital.

- What are the goals of the patient
 - patient preferences
 - Attitude to risk?

How do we decide how MDS should be treated?

Evidence

From clinical trials

Expert opinion

- From experience
- From registries

Expert consensus guideline

- European
- British

Guidelines – friend or foe?

Guidelines – friend or foe?

Lower-risk MDS recommendations for "standard" allogeneic SCT

'Low-risk' MDS: 75% MDS patients

Figure 1. Therapeutic algorithm for adult patients with primary MDS and low IPSS score. BM, bone marrow; sEpo, serum erythropoietin.

How do we treat MDS in the UK now?

- Most patients receive supportive care
 - Blood and/or platelet transfusions
 - Antibiotics for infections
 - This is a reasonable approach for most, because there are few treatments that work reliably without severe side effects

How do we treat low-risk MDS in the UK now?

- There are drugs approved in the NHS for the active treatment of MDS patients
 - Eprex (EPO)
 - Iron removal desferrioxamine, Exjade

Lenalidomide

Iron removal (chelation)

- Still not clear who should be treated with iron chelation
 - Certainly not everybody on blood transfusions
 - Only when we think that iron chelation will help to improve length of survival

 Currently we remove iron by infusions of **Desferal** under the skin

Exjade

- -is a tablet
- Seems as effective as Desferal
- Shorter time in use so long term effects not known

How do we treat MDS in the UK now?

Actively treating low blood counts

- EPO (Erythropoietin)
 - Once weekly injections
 - Most effective in patients with few blood transfusions or before the need for blood transfusions

Lenalidomide for MDS with del(5q)

(rare form; 5% MDS patients)

- ~2/3 patients respond well and become free of blood transfusions
- Responses last for at least on average 2 years

High-risk MDS

Figure 3. Therapeutic algorithm for adult patients with primary MDS and intermediate-2 or high IPSS score. CT, chemotherapy.

Azacitidine (Vidaza)

 Azacitidine kills cells as they divide

Given under the skin daily for 7 days

Large volume injection

Azacitidine

- 45% patients in the original study who were receiving red cell transfusions stopped needing these.
- Vidaza improved the short term quality of life
- Responses last for about one year

Aiming for cure

Stem cell transplant

- Considered for younger patients (<60-65 years)
 with all but the lowest risk MDS type
- Mostly uses blood cells now, not bone marrow
 - Preferably from matched brother / sister (only 1 in 3 chance of match)
- Results improving for transplants

Newly published guidelines for stem cell transplant in

MDS: 2017

Research FOR Patients -For an informed and empowered opinion- Have you made your clinical paper accessible yet?

Professor David Bowen and Leeds Teaching Hospitals are pleased to announce the start of a new service for patients who

would like a specialist MDS consultation but who are unable to,

The Leeds Teaching Hospitals NHS

S^t James's

Institute of Oncology

Trials No Longer Recruiting

Recently Published Trials

Results