Dr Kavita Raj Consultant Haematologist Guys and St Thomas' Hospital

HIGH RISK MDS AND HYPOMETHYLATING AGENTS

IPSS scoring system

Blood counts

Bone marrow blast percentage

Cytogenetics

Age as a modulator of median survival

IPSS Group	Median Survival (years)	Age <u><</u> 60 years	Age >60 years	Age >70
Low	5.7	11.8	4.8	3.9
Intermediate- 1	3.5	5.2	2.7	2.4
Intermediate- 2	1.2	1.8	1.1	1.2
High	0.4	0.3	0.5	0.4

IPSS Risk Categories Distribution

^{*}Estimated survival and risk of AML transformation

Goals for treatment

- Individual
- Prolong overall survival with best quality
- Prevent disease progression
- Achieve Complete remission
- Minimal side effects of therapy

Treatment Options

- Best Supportive care
- Low dose chemotherapy
- Intensive chemotherapy

Haemopoietic stem cell transplantation

Hypomethylating agents

Best Supportive Care

- Blood and platelet transfusions
- GCSF
- Prophylaxis against infection if prolonged neutropenia
- Iron chelation therapy
- No longer the mainstay of MDS therapy

Low Dose chemotherapy

Low dose cytarabine, subcutaneously

20mg/m² daily for 10-14 days

Disease control

Intensive chemotherapy

- Hospital admission for approximately 4 weeks
- Combination of 2-3 drugs with cytarabine
- Risk of infection
- Risk of delayed recovery of blood counts, marrow aplasia
- Achieve Complete remission (cytogenetic)
- Likelihood of relapse unless consolidated with a stem cell transplant

Haemopoietic stem cell transplantation

- Consolidative procedure after achieving complete remission can cure upto 40% of patients with MDS
- Donor availability
- Reduced intensity conditioned regimes have reduced toxicity
- Infection
- Immune side effects

Hypomethylating agents

Azacytidine

Decitabine (deoxy analog of azacytidine)

Act by inhibiting DNA methyl transferase

Also called Methyl transferase inhibitors

Promoter methylation of a gene

CpG Island with all 'C' unmethylated ON

CpG Island with all 'C' methylated OFF

Targeted Methylation ?effect on the gene

Mechanism of action

Trials with Azacytidine

- CALGB 8221 and 8421, Phase II studies established median 4 cycles of treatment needed for a response and subcutaneous use
- CALGB 9221, Phase III randomised control trial compared Azacytidine with Best supportive care Silverman et al JCO 2002
- AZA 001, Phase III randomised control trial comparing Azacytidine with Best supportive care, LD cytarabine or Intensive therapy Fenaux et al Lancet Oncology 2009

CALGB 9221

CALGB 9221 Results

- Azacytidine (99)
- Complete remission 7%
- Partial remission 16%
- Haematological improvement 37%
- Delayed time to AML by 9 months (12 vs 21 months)

- Best Supportive Care (92)
- Haematological Improvement 5%
- Overall survival 11 months

AZA 001

- Multicentre, international
- High risk MDS
- IPSS Int-2 or high
- FAB RAEB RAEB-t or CMML (<10% blasts
- Previously untreated
- Treatment option predetermined by physician

Aza 001Trial design

Results

- Median Age 69 years, 72% >65 years
- Survival at 2 years was doubled for patients treated with Azacytidine versus conventional care (50.8% vs 26.2%, p<0.0001)</p>
- Time to leukaemia transformation was 17.8 months for azacytidine group versus 11.5 months in the conventional care (p<0.0001)

Overall survival

 Overall survival for Azacytidine 24.5 months vs 15 months with conventional care (p=0.0001)

Results

Azacytidine was superior

To BSC

Low dose chemotherapy

As effective as intensive chemotherapy

Azacitidine for patients with 7q-/del7q

- Azacytidine prolonged survival to 19.8 months
- AZA001 30 Azacitidine 27 CCR
- Overall survival 13.1 vs 4.6 months
- 33% survived to 2 years
- Standard of care for this subgroup

Administration of Azacytidine

- 75mg/m² x7 days every 28 days
- Subcutaneously
- Average sized person two injections daily
- Rotating sites, abdomen, thighs, upper arms

Side effects of Azacytidine

- Well tolerated
- Increased blood or platelet requirements in the initial cycles
- Nausea
- Constipation/diarrhoea
- Injection site reaction
- Local nodules/bruises
- Febrile neutropenia/sepsis

Concomitant medications

Antisickness medications

Topical cream for local reactions

Laxatives to counter constipation

Allopurinol to prevent gout

Results

Decitabine

- Analog of Azacitidine
- Phase III study
- 45mg/m2/day x3 days q6 weeks IV
- Decitabine n=89, BSC n=81
- 43/89 received less than 2 cycles of decitabine
- CR9%, PR8% HI13%

Low dose decitabine

- IPSS 1.0, CMML, Phase I/II study
- 5-20mg/m2/day for 5/28 days IV
- Dose intensive schedule
- Unlimited cycles of therapy
- CR 34%, PR1%, Marrow CR 24%, 13% HI
- 20mg/m2/day best responses CR39%
- Median survival 19 months
- CMML 19 patients, CR 58%, HI 11%

Combination therapy

Azacytidine with HDAC inhibitors

Vorinostat

Responses in approximately 80%

Algorithm for treating high risk MDS

Summary

- MTI's should be considered for
- High risk MDS
- Particulary patients with high risk cytogenetics
- Studies on improving outcomes with these drugs either alone or in combination are ongoing

Licensing of Azacitidine

- Licensed by the FDA for all subclasses of MDS
- Azacytidine licensed by the EMEA for
- Int-2
- High risk MDS
- CMML
- AML with 20-30% blasts

Access to drugs

- Trials NCRN AML 16, CMML
- London cancer new drugs process of approval on going
- NICE review QALY's too high, company resubmitting
- ETA from local PCT

Acknowledgement

- MRC
- Prof Mufti
- Dr Shaun Thomas
- Patients at KCH and GSTT

Current trials

- MTI prior to stem cell transplant
- MTI maintenance therapy after AML induction therapy
- MTI maintenance therapy after allograft
- Alternative dosing strategies? Lower doses, 5 days a week?

Primary Endpoints

- Primary endpoint overall survival
- Survival by FAB subgroup
- IPSS risk group
- Cytopenia
- Cytogenetics
- -7/del(7q)
- WHO classification
- Serum LDH

Treatment Schedule

- 75mg/m2 sc 7/28 days for a minimum of 6 cycles
- LD cytarabine 20mg/m2 sc for 14 days/28 days for at least 4 cycles
- Induction chemotherapy with Cytarabine/
 Daunorubicine, idarubicine or mitoxantrone
- If CR or PR one or two consolidation courses
- Follow up 12 months after last patient enrolled

WPSS risk groups and survival

WPSS Risk Score	WPSS Risk Group	Median overall Survival months	Cumulative probability of leukaemic transformation at 2 years
О	Very Low	141	0.03
1	Low	66	0.06
2	Intermediate	48	0.21
3 or4	High	26	0.38
5	Very High	9	0.80

Epigenetics

- Chemical modifications of genes that affect their expression reversibly without alterations in their DNA sequence
- Enable dynamic control of genes in a context driven manner ie in time and space
- DNA methylation
- Histone acetylation

Survival and leukaemic transformation based on IPSS

HCT comorbidity score and transplant outcomes some

Sorror et al JCO 2007

Risk Group	Type of conditioning	Non Relapse Mortality (%)	Relapse(%)	Overall Survival (%)	Relapse free survival (%)
Group I HCT-CI score o-2, low risk	MA (n=138)	11	14	78	75
disease	NMA (n=28)	4	22	70	63
Group 2 HCT-CI score o-2 and	MA (n=176)	24	34	51	43
intermediate	NMA (n=34)	3	42	57	56
or high risk disease					
Group 3 HCT-Cl score 3	MA (n=52)	32	27	45	41
and low risk disease	NMA (n=19)	27	37	41	36
Group 4 HCT-Cl score 3 and	MA (n=86)	46	34	24	20
intermediate or high risk disease	NMA (n=44)	29	49	29	23

Secondary End points

- Time to transform to AML
- Haematological Improvement
- Red cell transfusion independence

Azacytidine vs best supportive care

	Azacitidine	BSC	HR	P value
Overall survival (months)	21.1	11.5	0.58	0.0045
Time to transformati on to AML	15.0	10.1	0.41	<0.0001

Azacitidine vs Low dose cytarabine

	Azacitidine	LD cytarabine	HR	P value
Overall survival (months)	24.5	15.3	0.36	0.0006
Time to transformatio n to AML (months)	15.0	14.5	0.55	0.097

Azacitidine vs Intensive chemotherapy

	Azacytidine	Intensive Chemotherap Y	HR	P value
Overall survival (months)	25.1	15.7	0.76	0.51
Time to transformatio n to AML (months)	23.1	10.7	0.48	0.19

Timing of transplantation

Figure 3. Net benefit or loss of overall discounted life expectancy for the 4 IPSS risk groups are shown above and below the x-axis. A net benefit for delaying transplantation is noted for low and int-1 risk groups, whereas any delay in the time to transplantation is associated with a loss in survivorship in the higher risk groups.

Myeloablative transplants
Delayed for low and int-1 MDS net gain of life expectancy
At diagnosis for Int-2 and High risk MDS is beneficial

DNA methylation

- 4 bases A,T,G,C.
- 5th base 5 methylcytosine methyl from a s-adenosyl methionine is incorporated into position 5 of the cytosine ring.
- This is restricted to CpG dinucleotides (cytosines that precede guanosine in the DNA sequence)

How does DNA become Methylated?

Enzymes called DNA methyltransferases (DNMTs) covalently link a methyl group from S Adenosyl Methionine to the 5 position of cytidine residues.

WHO Prognostic Scoring System

Variable	o	1	2	3
WHO Category	RA, RARS,5q-	RCMD, RCMD-RS	RAEB-1	RAEB-2
Cytogenetics*	Good	Intermediate	Poor	
Transfusion requirement	No	Regular		

•*As per the IPSS subgroups

Histone Octomer

Silencing of a hypermethylated promoter

DNA methylation in MDS

- In cancer methylation of genes increases
- These are reversibly switched off
- Critical pathways such as cell cycle control, cell death, cellular growth, DNA repair may be affected
- In MDS: p15INK4b, MLH1,ER, may be silenced by methylation and may be critical to disease progression
- Responses to MTI have been linked with demethylation of genes

Haematological Response

Haematological response	Azacitidine	CCR	P value
Any remission	29%	12%	0.0001
Complete remission	17%	8%	0.015
Partial remission	12%	4%	0.0094
Stable disease	42%	36%	0.33
Haematological improvement			
Any	49%	29%	<0.0001
Major erythroid improvement	40%	11%	<0.0001
Major platelet improvement	33%	14%	0.0003
Major neutrophil	19%	18%	0.87

Acknowledgement

- MRC
- Prof Mufti
- Dr Shaun Thomas
- Patients at KCH and GSTT

Disease Factors

- Blast percentage
- Cytogenetics: chromososome 7
- Tempo of disease
- De-novo or secondary MDS

Blast percentage

Cytogenetics

Cytopenia

Age as a modulator of leukaemic transformation

IPSS Group	Median time for 25% Risk of Leukaemia (years)	Age <u><</u> 60 years	Age >60 years	Age>70 years
Low	9.4	>9.4 (not reached)	>9.4 (not reached)	>5.8 (not reached)
		reactied)	reactied)	reactied)
Intermedia te- 1	3.3	6.9	2.7	2.2
Intermediate- 2	1.1	0.7	1.3	1.4
High	0.2	0.2	0.2	0.4

Choice of treatment

- Co-existing conditions
- Cardiac: previous MI, prosthetic valves
- Liver dysfunction
- Pulmonary: COPD,
- Mobility
- Rheumatoid arthritis
- High ferritin levels

Cytogenetic Risk

- Good Risk
 - Normal
 - -Y only
 - del5(q) only
 - del 20q only
- Intermediate Risk: Other anomalies
- Poor Risk
 - Complex (3 or more abnormalities)
 - chromosome 7 abnormalities

IPSS Variables

Prognostic Variable	Score				
	0	0.5	1.0	1.5	2.0
BM Blasts	<5%	5-10%	-	11-20%	21-30%
Cytogenetics	Good	Intermediat e	Poor		
Cytopenias	0/1	2/3			

Score 0 Low Risk 0.5-1.0 Intermediate I risk 1.5-2.0 Intermediate 2 risk ≥ 2.5 High risk