Genetic changes in MDS

Spectrum of MDS

Gross genomic changes are detected by cytogenetics

MDS cytogenetic

etudiae

MDS

n = 3860

Mutations alter proteins

Small genetic changes can only be detected at the molecular level.

```
Met Lys Leu His His Trp Lys Phe Asp *

ATG AAG TTA CAT CAT TGG AAA TTT GAT TGA
```

ATG AAG TTA CAT GAT TGA AAA TTT GAT TGA Met Lys Leu His Asp * Lys Phe Asp *

Point Mutations in MDS

Many mutations are very rare

★ Target present on the KCH panel

KCH: Myeloid Gene Panel

24 genes mutations

Trinscription factors and cell cycle	<u>Spliceosome</u> <u>component</u>	Epigenetic modification s	Signaling NRAS	Cohesi n comple x
<u>regulators</u>	- SF3B1	TET2	KRAS	_
RUNX1	U2AF1 SRSF2	IDH1 IDH2	FLT3 CBL	STAG2
TP53	ZRSR2	DNMT3A KDM6A	JAK2 KIT	
GATA2		ASXL1		
ETV6		EZH2		
CEBPA				
NPM1				

Research use only: clinical importance is yet to be determined

The challenge for the laboratory

 Integrating genomic analysis into diagnostic, prognostic and therapeutic systems for patients.

Therapy response / outcome

Lenalidomide (Revlimid)

TP53^{mut} do not achieve complete cytogenetic response in del5q MDS (Jadersten JCO, Austin Kulasekararaj BJH)

5'Azacytidine (Vidaza)

- TET2^{mut} may respond better
- TET2^{mut} and DNMT3A^{mut} may respond better
- ASXL1 and SF3B1 status also modulate response

Finally

- Genetic testing is more widely available:
 - Cheaper, simpler, faster
- Mutations help in the certainty of diagnosis.
- Incorporation into prognostic models such as IPSS
- The era of biomarker-based therapy may not be too distant

Department of Hematological Medicine, King's College London

Prof G Mufti Prof Judith Marsh Dr Austin Kulaesekararaj Dr Robin Ireland

Dr Steve Best Dr Aytug Kizilors Sara Ribeiro Tashna Smith

Beating Blood Cancers

